WEBINAR ON STATTISTICS FOR MICROBIOLOGISTS

AMR Data Collection, Curation, Analysis and Antibiogram Development

Julhas Sujan Data Science Engineer

August 05, 2023

By end of this presentation, you will be able to learn:

Importance and sources of AMR data Identification of data source and variables

AMR information cycle, Data collection, curation

Basic cleaning

- AMR data analysis using different tools Tools, Trends, patterns, antibiograms
- Antibiograms, Dashboard and Research Develop antibiogram and publish manuscript
- AI, Machine learning and Data science
- Drug discovery, Prediction and Mobile application

Why is AMR data important

"On the basis of our predictive statistical models, there were an estimated 4.95 million

(3.62–6.57) deaths associated with bacterial AMR in 2019, including 1.27 million deaths

attributable to bacterial AMR."

e an estimated 4·95 million including 1·27 million deaths

AMR information cycle

Source: https://www.open.edu/openlearncreate/mod

National and local level policy, planning and advocacy

Which data units, where, and how many

Sources of data and necessary information (variables)

Primary: surveys, interviews, routine record keeping, laboratory tests or experiments. **Secondary:** Existing data are accessed and analysed by someone other than the person(s) who collected the data.

VITEK 2 or MYLA Software

Manual Registers

Laboratory Information System

Excel Sheet/ Others

Example of a Sample data

Fi	le Home	Insert	Ρ	age l	Layout	Formulas	Data	Review View	Help	(Q 1	Fell me	what	you v	vant to do	
C2	7 🔹	: ×	~	f _x	70											
	А		В	С	D	E	F	G		н	1	J	K	L	м	N
1	Identification	number	Sex	Age	Specimen	_date Yea	r Sample	Organism	A	MC A	٩ΜК	CIP	CRO	СТХ	GEN	SXT
2	_9242362412_		m	70	1/2/2017	201	7 Pus	Staphylococcus aure	eus	S	5	S			S	R
3	_9139642321_		f	34	1/2/2017	201	7 Pus	Staphylococcus aure	eus	S	5	R			S	S
4	_8021891052_		m	52	1/2/2017	201	7 Pus	Staphylococcus aure	eus	S	5	R			S	R
5	_1617418339_		m	27	1/2/2017	201	7 Pus	Staphylococcus aure	eus	S	5	S			S	S
6	_1501885197_		m	48	1/2/2017	201	7 Wound Sv	Staphylococcus aure	eus R	S	5	R			S	R
7	_1301121252_		m	60	1/2/2017	201	7 Pus	Staphylococcus aure	eus	S	6	R			S	R
8	_6584123381_		f	70	1/2/2017	201	7 Urine	Klebsiella sp.		S	5	S	S		S	R
9	_5245247211_		m	60	1/2/2017	201	7 Urine	Klebsiella sp.		S	5	R	S		S	R
10	_5140148802_		f	12	1/2/2017	201	7 Wound Sv	Klebsiella sp.		R	2	R	R	R	R	R
11	_5120871702_		f	63	1/2/2017	201	7 Urine	Klebsiella sp.		R	1	R	R		R	R
12	_4620205931_		m	63	1/2/2017	201	7 Pus	Klebsiella sp.	R	S	5	R	R	R	S	R
13	_2442203663_		f	47	1/2/2017	201	7 Pus	Klebsiella sp.	R	S	5	S	S	S	S	S
14	_1240941431_		m	65	1/2/2017	201	7 Urine	Klebsiella sp.		S	5	R	S		S	R
15	_6328111119_		f	70	1/2/2017	201	7 Blood	Escherichia coli		S	5	S	S		S	S
16	_4718848462_		f	57	1/2/2017	201	7 Urine	Escherichia coli		S	5	R	S		S	R
17	_3955138154_		f	35	1/2/2017	201	7 Urine	Escherichia coli		S	5	R	S		S	S
18	_3673267750_		m	65	1/2/2017	201	7 Urine	Escherichia coli		S	5	R	R		S	S
19	_2526268228_		m	58	1/2/2017	201	7 Pus	Escherichia coli		R	8	S	S	S	R	R
20	_1641141162_		f	27	1/2/2017	201	7 Urine	Escherichia coli		S	5	R	S		S	S
21	_1531292172_		f	40	1/2/2017	201	7 Urine	Escherichia coli		R	2	R	R		R	S
22	_1516984671_		f	70	1/2/2017	201	7 Urine	Escherichia coli		S	5	S	S		S	S
23	_0186641342_		f	43	1/2/2017	201	7 Urine	Escherichia coli		S	5	R	R		R	S
24	_6783982251_		f	40	1/3/2017	201	7 Pus	Staphylococcus aure	eus S	S	5	S			S	R
25	_6393247351_		f	55	1/3/2017	201	7 Wound Sv	Staphylococcus aure	eus R	S	5	R			R	R
26	_3108178241_		m	70	1/3/2017	201	7 Pus	Staphylococcus aure	eus	S	5	R			S	R

Sources of data and necessary variables ...

Status, Hospital information, Date of

admission, Date of discharge,

Number of days previous

hospitalisation

Diabetes, Chronic Kidney Disease,

Chronic Liver Disease, CKD, Cancer,

Other

Urine, Stool, Wound swab/ pus,

Sputum, Blood, Endotracheal

aspirate and other

- Identified organizms
- Zone of inhibition value or
 - RIS result
 - Both

How is measured AMR data?

Study objective: To estimate the country/hospital level AMR prevalence and trends for WHO priority pathogens and other clinically important and frequently isolated pathogens as well as to enable the comparison of countries on spatiotemporal maps¹.

> No. of non-susceptible isolates AMR rate=

No. of tested isolates

The AMR rate is the extent to which a pathogen is resistant to a particular antimicrobial agent or class as is determined by the proportion of isolates that are non-susceptible (i.e., either intermediate or resistant) over a one-year period

X 100 (CI 95%)

** CIs for AST data can be constructed using the Wilson score method

To determine the association between AMR and its potential drivers, the following patient and country-level factors were considered:

- **Patient-level factors:** demographics (age and gender), diagnosis, comorbidities, antimicrobial usage, presence of device (catheter, central line or ventilator) and origin of infection (hospital or community)
- **Country-level factors:** Global Health Security index scores on AMR prevention, primary education, GDP per capita, physician and nurse density, disease prevalence and antibiotic consumption in defined daily dose (DDD) per 1 000 inhabitants (the country-level associations are presented separately at a regional or continental level)

AMR data analysis (Conceptual framework)

Patient demographic information

Risk factors, clinical history

Origins (Hospital or community)

Pathogens/ Organisms

Samples

Independent variables

Dependent variable

AMR data analysis (Descriptive stats)

- **Descriptive analysis for categorical variables**
 - Count: AST results showed that 38 of the 120 MRSA isolates were resistant to levofloxacin
 - Proportion: AST results showed that 31.7% of the 120 MRSA isolates were resistant to levofloxacin
 - Frequency: Found 120 positive isolates
- **Descriptive analysis for numeric variables**
 - Arithmetic mean
 - Geometric mean
 - Median
 - Mode

Measures of central tendency

- Percentiles
- Interquartile range •
- Variance
- Standard variance \bullet

AMR data analysis (Inferential stats)

- Allow us to make predictions about a population, based on data collected from a sample lacksquare
- Discuss in detail in the next session \bullet

AMR data curation and analysis tools

R-Programming

- R Package for AMR: https://msberends.github.io/ AMR
- Example: https://julhas.com/blog/amrdata-analysis-using-r

Research | Conferences | Presentations | DHIS2 Profile | DHIS2 trainingland | DHIS2 ePortal | JS Edutech | MPH Materials | QAAPT | Hiking | Travelling | Running | Blog

Back to blog

AMR Data Analysis Using R

Posted: 23 December 2 Author: Julhas Sujan

About AMR and R package

R package to simplify the analysis and prediction of Antimicrobial Resistance (AMR) and to work with microbial and antimicrobial data and properties, by using evidence-based methods. Copyright by: https://msberends.github.io/AMR/index.html#copyright

Outine

Stata/ SPSS

- Available commands
- Example: https://julhas.com/blog/amrdata-analysis-using-stata

search | Conferences | Presentations | DHIS2 Profile | DHIS2 Trainingland | DHIS2 ePortal | JS Edutech | MPH Materials | QAAPT | Hiking | Travelling | Runni

Back to blog AMR Data Analysis Using Stata

sted: 22 December 2021

About AMR and Stata

The IBM Stata software will help us to analyze the antimicrobial resistance data. We can use cross tabulation, pearson's chi-squared test, bar, pie, line, box, histogram, and regression analysis to determine frequency distributions.

Outine

Python

• Python commands

ig | Bi

CIRCA

A: Each section of the diagram represents the resistance observed in *E. coli* against the antibiotic. Size of each section is proportional to the proportion of *E. coli* resistant to the antibiotic over the study period. Antibiotics of the same class are shown in similar colors.

B: Line graphs show temporal trends of proportion of resistant *E. coli* in a clockwise direction from 2011 to 2015. **C**: Bar charts show the comparison of susceptibility to resistant strains in patients of different age groups. Moving from out to inward, bars represent proportion of resistant *E. coli* reported in children <5 years of age, young adults between 6 to 18 years, middle aged 19 to 45 years old, 45 to 65 years old patients, and elderly over 65 years of age, respectively.

D: Gender-wise comparison to susceptibility to resistant *E. coli* is shown in form bars. Outer circle and inner circle shows proportion of resistant *E. coli* isolated from women vs. men, respectively.

E: For co-resistance analysis, antibiotics belonging to the same class with same susceptibility profile for all isolates of *E. coli* were merged into a single variable.

F: Proportion of *E. coli* isolates resistant to one antimicrobial resistant to another antimicrobial are shown in the connections. The area covered by the connection on E is proportional to the level of co-resistance observed. Co-resistance proportions were scaled down to 1/15th of the actual overlap for visualization.

Source: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250226

Fig: Antimicrobial resistance in *Escherichia coli* (E. coli).

WHONET

م 🥥	Analysis	s results - Organis	sm = All organis	sms (n=42016 Isolates)																			—	þ	\times
Fi	le E	dit																							
	Сор	y table	Copy grap	oh Save table	Save	graph	Cor	ntinue		Show	/ hidden column	S													
		Organisms	Code	Antibiotic name	Site of infection	Breakpoints	Number	%R	%I	%S	%R 95%C.I.	%S 95%C.I.	Number	6	7	8	9	10	11	12	13	14	15	16	17 ^
►	A	ll organisms	CRB_ND100	Carbenicillin		(None)	8146	78.3	0.7	21	77.4-79.2	20.1-21.9	0												
	A	ll organisms	MET_ND5	Methicillin		10 - 13	1700	56.7	0.4	42.9	54.3-59.1	40.5-45.3	0												
	A	ll organisms	AMC_ND20	Amoxicillin/Clavulanic acid		14 - 17	10240	89.6	0.2	10.2	89.0-90.2	9.7-10.8	0												
	A	ll organisms	TZP_ND100	Piperacillin/Tazobactam		18 - 20	9393	48.5	2.1	49.4	47.5-49.5	48.4-50.4	1												
	A	ll organisms	CRO_ND30	Ceftriaxone		20 - 22	12916	77	0.5	22.5	76.2-77.7	21.8-23.2	0												
	A	ll organisms	FEP_ND30	Cefepime		19 - 24	749	56.5	0.5	43	52.8-60.0	39.4-46.6	0												
	A	ll organisms	IPM_ND10	Imipenem		20 - 22	3117	42.4	2.2	55.3	40.7-44.2	53.6-57.1	1												
	A	ll organisms	MEM_ND10	Meropenem		20 - 22	4997	46	1.1	53	44.6-47.4	51.6-54.3	0												
	A	ll organisms	AMK_ND30	Amikacin		15 - 16	13947	55.3	0.6	44.1	54.5-56.1	43.2-44.9	0												
	A	ll organisms	GEN_ND10	Gentamicin		13 - 14	13531	59	0.3	40.6	58.2-59.9	39.8-41.5	0												~
<			•		-	•						-													>

https://whonet.org

AMASS

Section [2]: Isolate-based surveillance report

Blood: Escherichia coli

(No. of patients = 6)

Gentamicin H
Amikacin 🛏 🔤
Co-trimoxazole 🛏 🛶
Ampicillin 🛏 🛏 🔤
FLUOROQUINOLONES
Ciprofloxacin ———
Levofloxacin
3GC ⊢
Cefpodoxime
Ceftriaxone
Cefotaxime
Ceftazidime 🛏 🛏
Cefepime
CARBAPENEMS
Imipenem H
Meropenem
Ertapenem
Doripenem
Colistin
· · · · · · · · · · · · · · · · · · ·
0 20 40 60 80 100 *Proportion of NS isolates(%)

Antibiotic agent	Proportion of NS isolates (n)	95% CI
Gentamicin	0% (0/6)	0% - 39%
Amikacin	0% (0/6)	0% - 39%
Co-trimoxazole	0% (0/6)	0% - 39%
Ampicillin	33% (2/6)	10% - 70%
FLUOROQUINOLONES	0% (0/6)	0% - 39%
Ciprofloxacin	0% (0/6)	0% - 39%
Levofloxacin	NA	-
3GC	0% (0/6)	0% - 39%
Cefpodoxime	NA	-
Ceftriaxone	NA	-
Cefotaxime	0% (0/6)	0% - 39%
Ceftazidime	0% (0/6)	0% - 39%
Cefepime	NA	-
CARBAPENEMS	0% (0/6)	0% - 39%
Imipenem	0% (0/6)	0% - 39%
Meropenem	NA	-
Ertapenem	NA	-
Doripenem	NA	-
Colistin	NA	-

https://amass.website/

QAAPT

Escherichia coli	•	Amoxicillin / Clavulanic ac 🔻	5	•	Q	

CSV					Search:		
name	Å.	Percentage (%)	Number of Resistant Isolates	Total test	Combined Value		
		43.64	1424	3263	43.64 (1424/3263)		•
/ Clavulanic acid		89.28	1933	2165	89.28 (1933/2165)		
in		88.04	162	184	88.04 (162/184)		
		56.06	37	66	56.06 (37/66)		
2		77.62	2487	3204	77.62 (2487/3204)		
in		69.74	1987	2849	69.74 (1987/2849)		
		17.76	322	1813	17.76 (322/1813)		
e		64.89	2114	3258	64.89 (2114/3258)		
		52 53	1653	31/17	52 53 (1653/31/7)		-
o 16 of 16 entries					Previous 1	Next	

Antimicrobial resistance patterns by year

2016
2017
2018
2019
2020

Other platforms

- ATLAS: Antimicrobial Testing Leadership And Surveillance
- http://www.bccdc.ca/health-professionals/data-reports/antimicrobial-resistance- \bullet utilization/antimicrobial-resistance-dashboard
- https://amrmap.net/
- https://dashboard.globalamrhub.org/ ullet
- https://amrhub.ru/ lacksquare
- https://amrcloud.net/en/
- https://amr.tghn.org
- https://www3.paho.org/data/index.php/en/mnu-topics/antimicrobial-resistance/572-amr-acercaulleten.html
- NARMS: https://www.fda.gov/animal-veterinary/antimicrobial-resistance/national-antimicrobial- \bullet resistance-monitoring-system

Antibiogram components

- Table 1: Distribution of bacterial growth in different specimen
- Table 2: Pattern of organisms isolated ullet
- Table 3: Distribution of bacteria isolated from OPD, IPD •
- Table 4: Distribution of sex and specimens
- Table 5: Antibiotic susceptibility pattern of major Gram-positive organisms ullet
- Table 6: Antibiotic susceptibility pattern of major Gram-negative organisms ullet
- Table 7: Distribution of organisms and specimens

Example of cumulative antibiograms

	Less restricted antibiotics																				
	Less restricted antibiotics																				
	Mo. Mo. Mo. Mo. Mo. M																				
	Organism	z	%S	n	%S	n	%S	n	%S	n	%S	n	%S	n	%S	n	%S	n	%S	<u>n</u>	%S
	Escherichia coli	821	- 54	821	84	821	87	816	77	821	79	801	96	821	97	821	76	802	92	53	100
	Klebsiella preum oniae	133	R		89	133	85	131	84	133	88	130			95	133	88	130	98	118	99
Pseudom onas aeruginosa 105 R R R R 92 105 60 104 95 97 95 Enterococcus faecalis 80 100 80 R R R 100 80 I														95							
Enterococcus faecalis 80 100 80 R 100 80 I <th< td=""><td></td></th<>																					
Proteus mirabilis 58 93 58 100 58 86 58 90 58 91 58 R 98 58 100 58 100 54 10 ESCAPPM group 68 R 79 68 81 67 93 68 75 68 79 62 10															100						
ESCAPPM group 68 R 79 68 81 67 93 68 75 68 79 62 10														100							
<70% of is plates sensitive 70-89% of is plates sensitive >90% of is plates sensitive not tested or not clinically effective antibiption R intrinsic resistance <i>Ecoli</i> ESBL = 2.8% of is plates <i>K pneumonia</i> ESBL = 10.5% of is plates CRE-1 is plate of <i>Bnterobacter cloacae Enterococc uss p</i> -85 is plates <i>States (VRE = 0% of is plates) Staphylococc us pureus</i> - 27 is plates (MRSA = 26% of is plates)																					
NOTE 1. Data processed by OrgTRx (antibiogram)s oftware to exclude multiple is plates so only the first is plate of a given species per patient per year per 2. Only organisms with greater than 30 is plates are included (CLSI Guideline M39-A2 recommends that results should include at least 30 is plates to 3. ESCAPPM group includes <i>Enterobacter, Serratia, Otrobacter</i> (excluding <i>C. koseri</i>), <i>Aeromonas, Hafnia, Providencia, Pontoea</i> and <i>Morganella</i> species per 4. Antimicrobial susceptibility testing method: EUCAST microbroth dilution and disc diffusion																					

Source: https://www.safetyandquality.gov.au/sites/default/files/migrated/A-Specification-for-Hospital-Cumulative-Antibiograms-December-2013.pdf

		R	estri	cted	Antik	piotic	s		
Amiharin		المطابقة محمدهم	centexote	Mercenet	iliai ado aixi	Northersein		a janaaaaa M	vancompan
s	п	%s	n	ŝ	n	%s	n	%s	п
00	803	96	804	100	804	94	306	R	
99	130	88	130	100	130	85	130	R	
95	100	R		91	105	90	100	R	
		R						100	79
00	58	100	58	100	58	100	58	R	
00	68	81	68	99	68	90	68	R	

ic not recommended to be used in children without specialist advice

er subtype (eg. urine) is included to be considered significant. pp.

Example of cumulative antibiograms ...

Hospital Antibiogram – 2019 Inpatient – All Units Period: 01/01/19 – 12/31/19		TOTAL ISOLATES	Penicillin	Ampicillin	Ampicillin/sulbactam	Piperacillin/tazobactam	Ceftriaxone	Cefepime	Meropenem	Levofloxacin	Oxacillin	SXT	Nitrofurantoin	Gentamicin	Vancomycin
÷	Escherichia coli	2215		41	54	94	85	88	100	77		76	97	91	
Gram (–)	Klebsiella pneumoniae	532			72	95	89	94	99	91		83	35	93	
	Pseudomonas aeruginosa	446				92		91	87	81				90	
	Staphylococcus aureus	821									62	95			100
0	MRSA	312									0	94			100
am (+	MSSA	509									100	96			100
Ū	Streptococcus pneumoniae	47	97 (83) ^a				97 (86) ^a			100					100
	Enterococcus spp.	295		87									99		89

Antibiogram by R

$\langle \neg \neg \rangle$	🖅 🔚 🖸 Source on Save 🔍 🎢 🖌 📃
1	# AMR works great with dplyr, but it's not required or neccesary
2	#Julhas Aug 02, 2023
3	library(AMR)
4	library(dplyr)
5	
6	example_isolates %>%
7	<pre>mutate(bacteria = mo_fullname()) %>%</pre>
8	<pre># filtering functions for microorganisms:</pre>
9	filter(mo_is_gram_negative(),
10	<pre>mo_is_intrinsic_resistant(ab = "cefotax")) %>%</pre>
11	# antibiotic selectors:
12	select(bacteria,
13	aminoglycosides(),
14	carbapenems())
15	antibiogram(example_isolates,
11:26	(Top Level) \$
Console	Terminal × Background Jobs ×

😱 R 4.2.2 · ~/ 🖗

i For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) i For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem) # \triangle tibble: 35 x 7

# A LIDDIE. 33 X /							
bacteria	GEN	TOB	AMK	KAN	IPM	MEM	
<chr></chr>	<sir< td=""><td>> <sir></sir></td><td><sir></sir></td><td><sir></sir></td><td><sir></sir></td><td><sir></sir></td><td></td></sir<>	> <sir></sir>	<sir></sir>	<sir></sir>	<sir></sir>	<sir></sir>	
1 Pseudomonas aeruginosa	I	S	NA	R	S	NA	
2 Pseudomonas aeruginosa	I	S	NA	R	S	NA	
3 Pseudomonas aeruginosa	I	S	NA	R	S	NA	
4 Pseudomonas aeruginosa	S	S	S	R	NA	S	
5 Pseudomonas aeruginosa	S	S	S	R	S	S	
6 Pseudomonas aeruginosa	S	S	S	R	S	S	
7 Stenotrophomonas maltophi	lia R	R	R	R	R	R	
8 Pseudomonas aeruginosa	S	S	S	R	NA	S	
9 Pseudomonas aeruginosa	S	S	S	R	NA	S	
10 Pseudomonas aeruginosa	S	S	S	R	S	S	
# i 25 more rows							
<pre># i Use `print(n =)` to s</pre>	see more	rows					
> antibiogram(example_isolat	es,						
+ antibiotics =	c(aminog	lycosid	es(), (carbap	enems ())))	
i Using column 'mo' as input	for col.	_mo.					
i For aminoglycosides() using	g columns	GEN'	(genta	umicin)	, 'тое	' (tobran	iyc
i For carbapenems() using co	lumns 'I	PM' (imi	ipenem)	and '	MEM' (meropenen	i)
i 502 combinations had less t	than min	imum = 3	0 resu	lts an	d were	ignored	
# A tibble: 10×7							
`Pathogen (N min-max)`	AMK GE	N IPM	KAN	MEM	TOB		
* <chr> <a< td=""><td>lb1> <db1< td=""><td>> <db1></db1></td><td><db1></db1></td><td><db1></db1></td><td><db1></db1></td><td></td><td></td></db1<></td></a<></chr>	lb1> <db1< td=""><td>> <db1></db1></td><td><db1></db1></td><td><db1></db1></td><td><db1></db1></td><td></td><td></td></db1<>	> <db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>		
1 CONS (43-309)	0 8	6 52	0	52	22		
2 E. coli (0-462)	100 9	8 100	NA	100	97		
3 E. faecalis (0-39)	0	0 100	0	NA	0		
4 κ. pneumoniae (0-58)	NA 9	0 100	NA	100	90		
5 P. aeruginosa (17-30)	NA 10	0 NA	0	NA	100		
6 P. mirabilis (0-34)	NA 9	4 94	NA	NA	94		
7 S. aureus (2-233)	NA 9	9 NA	NA	NA	98		
8 5. epidermidis (8-163)	0 7	9 NA	0	NA	51		
9 5. hominis (3-80)	NA 9	2 NA	NA	NA	85		

cin), 'AMK' (amikacin), and 'KAN' (kanamycin)

	- Pa	atnogen (N min-max)	AMK	GEN	TBW	KAN	MEM	TOB	
*	<0	hr>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	
1	Col	NS (43-309)	0	86	52	0	52	22	
2	Ε.	coli (0-462)	100	98	100	NA	100	97	
3	Ε.	faecalis (0-39)	0	0	100	0	NA	0	
4	к.	pneumoniae (0-58)	NA	90	100	NA	100	90	
5	Ρ.	aeruginosa (17-30)	NA	100	NA	0	NA	100	
6	Ρ.	mirabilis (0-34)	NA	94	94	NA	NA	94	
7	s.	aureus (2-233)	NA	99	NA	NA	NA	98	
8	s.	epidermidis (8-163)	0	79	NA	0	NA	51	
9	s.	hominis (3-80)	NA	92	NA	NA	NA	85	
10	s.	pneumoniae (11-117)	0	0	NA	0	NA	0	

>

Artificial Intelligence, Machine Learning and Data Science

2010

2020

Year

0%·

(n = 1001, model: binomial)

Next: Descriptive and inferential statistics

Parametric or non- parametric?	Outcome variable	Number of groups <mark>1</mark>	Statistical test	K
Parametric	Categorical: nominal with two levels (dichotomous)	Two or more	Chi-squared test	E
Non-parametric	Categorical: ordinal, or numeric when assumptions for a t-test are not met	Two groups	Mann-Whitney U test (Wilcoxon rank-sum test)	
Non-parametric	Categorical: ordinal, or numeric when ANOVA test assumptions are not met	Three or more groups	Kruskal-Wallis test	0
Parametric	Numeric	Two groups	Student's t-test	
Parametric	Numeric	Two or more groups	One-way ANOVA	
Parametric	Numeric	Two or more groups	Simple linear regression with one exposure variable	
Parametric	Categorical: nominal with two levels (dichotomous)	Two groups	Binomial logistic regression	Li

Source: https://www.open.edu/openlearncreate/mod/oucontent/view.php?id=174276&printable=1

Key assumptions

Expected frequency in any cell of a contingency table is not <5 or no nore than 80% of cells have a value of <5

- Row and column totals are fixed
- Outcome can be ranked

Dutcome can be ranked

- Normal distribution of outcome variable
- Residuals have normal distribution
- Variance is the same in both groups (otherwise use modified ttest)
- Normal distribution of outcome variable
- Variance is the same in all groups
- Normal distribution of outcome variable for a given exposure value
- Linear relationship (roughly) between exposure and outcome (check with scatterplot)
- Homoscedasticity: the variance of residuals is the same for any value of the exposure variable

inear relationship between the exposure and log odds

THANK YOU

If you have any questions and queries, I will be happy to answer them during the QA session.

Feel free drop an email with your query to: info@jaetech.co

